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Stress and strain partition in elastic and 
plastic deformation of two phase alloys 
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A stress and strain partition theory for two phase alloys was developed on the basis of the 
modified rules of mixtures. The extreme value condition of macroscopic strain energy density was 
found through Lagrangian multiplier method. Expressions for macroscopic elastic constants of 
two phase alloys were derived from the extreme value condition by assuming the strain linearity 
between constituent phases. Governing equation for stress and strain partition in plastic 
deformation was also obtained from the extreme value condition. The calculated elastic constants 
of WC-Co alloys fell invariably within the Hashin and Shtrikman's bounds. According to the 
governing equation the stress ratio between constituent phases was plotted as a function of strain 
increment ratio. By applying the governing equation to spheroidized carbon steel and duplex 
stainless steel, it was shown that the stress ratios, strain ratios, macroscopic stress-strain curves, 
and internal stresses could be evaluated from thein situstress-strain curves of constituent phases. 

1. Introduct ion  
The stress and strain partition in two phase alloys 
results from the different mechanical properties be- 
tween constituent phases [1-8]. Most of the elastic 
and plastic deformation behaviours of two phase 
alloys are related to the nonhomogeneous deforma- 
tion. But there appears to be few general theories 
which can be applied to nonhomogeneous elastic and 
plastic deformation. 

The elastic constants of two phase alloys vary non- 
linearly with volume fractions. This phenomenon 
comes from the mutual interactions between the con- 
stituent phases whose elasticconstants are different 
from each other. To predict elastic constants of com- 
posite body, extreme value theories have been fre- 
quently applied. Paul [9] derived lower and upper 
bounds of macroscopic elastic constants from the en- 
ergy theorems, and Hashin and Shtrikman [10, 11] 
found other bounds from the variational principles. 
The results were in good agreement with the experi- 
mental observations [12-16] and with the finite 
element methods [17], but the theories could not 
describe the plastic deformation behaviours. 

During plastic deformation of two phase alloys the 
plastic incompatibility between constituent phases 
causes the internal stress. It was known that plastic 
relaxation starts to occur after about 1 per cent strain 
[18-20]. But the internal stress from the unrelaxed 
plastic incompatibility plays an important role in 
stress and strain partition. If the in situ stress-strain 
curves of constitutent phases are known, which could 
be obtained by the dislocation density models [1, 8, 
18, 19], estimation of the internal stress is a major 
procedure on the calculation of the stress and strain 
partition. The internal stress has been evaluated by 
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several theoretical approaches: the continuum the- 
ories [7, 21-25], the shear-lag models [26, 27] and the 
dislocation continuum theory [20], and by experi- 
mental methods: the Bauschinger effect test [8, 30] 
and the X-ray diffraction test [29]. The present theory 
will supply a method by which the partitioned stresses 
and strains and the internal stresses can be directly 
calculated from the in situ flow curves of constituent 
phases. 

The objectives of the present paper are to develop 
a general theory for elastically or plastically non- 
homogeneous deformation, and to demonstrate the 
validity of the theory by applications to practical 
alloys. In the following sections, it is assumed that 
strain energy density has an extremum during de- 
formation to develop a new stress and strain partition 
theory. The extreme value condition was derived 
through the Lagrangian multiplier method [34], and 
was used to obtain the equations for elastic constants 
and the governing equation for stress and strain parti- 
tion of two phase alloys. The newly developed theory 
was tested by application to representative cases: 
macroscopic elastic constants of WC-Co alloys, stress 
and strain partition of a duplex stainless steel and of 
a spheroidized carbon steel. 

2. S tres s  and strain part i t ion theory  
The modified rule of mixtures was suggested by 
Tamura et al. [33]. It was shown that macroscopic 
stress and strain can be adequately calculated from the 
in situ stress and strain of each constituent phase by 
the modified rule of mixtures Il l .  Recently, Cho and 
Gurland [8] derived the modified rule of mixtures for 
two phase alloys by a stereological approach. The 
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modified rules of mixtures for 0-component of stress 
and strain in cartesian coordinates can be written by 

oij = f l  c~,} + f2 r (1) 

eij = f l e 5  + f2~2 (2) 

where o,j and ~,i are macroscopic stress and strain 
while o/}, o2, el}, and el 2 are in situ average stresses 
and average strains in phase 1 and phase 2, and f l  and 
f2 are the volume fractions. 

The  macroscopic strain energy density U can be 
expressed by 

U = ~.o,sd~.i s (3) 

where the summation convention for tensor compon- 
ent was used. Differentiating Equation 2, 

daij = f l  dg/} + f2 d ~2 (4) 

then macroscopic strain energy density of Equation 3 
becomes 

U = f(~o/ldgl} + f l fz[Icyi lde,  2 + ~ch}da/1] 

2 2 2 + f2 ~ cYij dgij (5) 

This macroscopic strain energy density increases with 
increasing e,} and a s. But the increasing path of the 
strain energy density is constrained by the microstruc- 
ture of specimen and the loading conditions. Gener- 
ally, the constraints give the minimized or maximized 
path, along which energy of the system increases. Thus 
we shall assume that macroscopic strain energy dens- 
ity U has an extreme value during deformation. 

Lagrangian multiplier method [34] is used to find 
the extreme value condition. In this method the con- 
straints are incorporated in to  the increment of 
physical quantity by means of multipliers. In the de- 
formation of two phase alloys various constraints can 
be formulated from the microstructural properties; 
namely, shape, alignment and volume fractions of 
constituent phases, and from the loading mode. Here 
one constraint for volume fractions is used to derive 
a general extreme value condition of strain energy 
density. 

The constraint for volume fractions is 

C = f~ + f2 -- 1 = 0 (6) 

One can regard the strains of each phase as constant 
values for the theory development. Differentiating 
U and C by f l  and f2 gives 

and 

8U 8U 
dU = ~ d f l  + ~ d f 2  (7) 

o72 

~C ~C 
dC - ~ d f a  + ~22 d f2 (8) 

Lagrangian multiplier X i s  introduced to construct the 
extreme value condition of U such as [34] 

d g  + LdC = 0 (9) 

Inserting Equations 7 and 8 into Equation 9, then we 
obtain 

8U OC 
+ X=;  = 0 (10) 

OJl 
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~ U  ~ C  

af2-- + ) ~ 2  = 0 (11) 

Since Equation 6 gives the following condition, 

one can write 

~C a c  
- - 1 ( 1 2 )  

afl afz 

~U 8U 
- - ~ ( 1 3 )  

~fl af2 

where )~ is a constant which need not be determined. 
When this condition is satisfied, U is an extremum at 
a stress-strain state. 

Inserting Equation 5 into Equation (13), 

2f, I d ,f + f2 I + f2 S de,  
= 2f2Io2de 2 + f l l c y i } d g  2 +fl lcy2dgi} (14) 

Removing the integral notation, 

[o  2 - o,}] [(1 - f )dg i}  + f d e  2] 

+ [(1 - f ) o ~  + f o  2] [de 2 - de,}] = 0 (15) 

where f l  = 1 - f  and f2 = f With the modified rules 
of mixtures, Equations 1 and 2, the above equat ion  
becomes 

( (y2  _ cyi l )dgi j  + o . / j (dg2  _ de/}) = 0 (16) 

One can regard Equation 16 (or Equation 15) as 
a general governing equation for nonhomogeneous 
elastic and plastic deformation. In the later sections 
Equations 15 and 16 will be used to derive expressions 
for the macroscopic elastic constants and the govern- 
ing equation for stress and strain partition in the 
plastic deformation of two phase alloys. 

On the other hand Equation 15 can be also ob- 
tained by applying the following equation to Equa- 
tion 5, 

dU 
= 0 (17) 

d f  

This equation indicates that U has the extreme value 
when it is satisfied with Equation 13. Generally, the 
soft phase in the two phase alloys deforms more rap- 
idly than the hard phase, so that the strain increment 
of the soft phase is larger than that of the hard phase. 
But the hard phase receives higher stress than the soft 
phase because load transfer occurs from the soft phase 
to the hard phase [8, 27]. Therefore assuming phase 
2 is the harder phase, the conditions that 0,1 < ~2. and 
d ~  > de 2 are obtained. Thus the second order deriv- 
ative of U (see Equation 5) satisfies 

d2U 
= 2~(ch}-  o2) (d~ ,} -  d~ 2) < 0 (18) 

d f  2 

Hence it appears that U increases along the max- 
imized path on straining. 

3. Macroscop ic  elastic constants  
In this section the methods to derive the expressions 
for elastic constants of the isotropic composite from 



Equation 15 are suggested. For simplicity, the micro- 
structure of the composite body is assumed such that 
equiaxed second phase particles are uniformly embed- 
ded in matrix. It is also assumed that constituent 
phases are elastically isotropic. With these conditions 
the composite is also elastically isotropic. When a ma- 
terial is elastically isotropic, all elastic constants are to 
be calculated fi'om two known elastic constants by the 
correlations between the elastic constants. Thus the 
expressions for shear modulus G and for bulk 
modUlus K are firstly obtained from Equation 15. 

3.1. Shear modulus G 
Assuming that two phase body is subjecte d to external 
shear stress along the 12-direction, and the stress is 
within elastic limit, then the 12 and 21-components of 
macroscopic stress and strain can exist (see Equation 
16). And the 12 and 21-components of stress and strain 
are the same as each other at individual phases and at 
the composite of the phases. Therefore Equation 15 
becomes 

210"12z -- 0"~2] [(1 - f)dc~2 + fd~;22] 

2 + 2[(l - f )~s~2  + fa12]Ede12 - d e ~ 2 ]  = 0 

09)  

Shear stress ratio between phase 1 and phase 2 is 
obtained from Equation 19, thus 

~ 2  2(1 - - f )  + ( 2 f -  1)(de~Z2/da~z) 
r  (1 - 2f) + 2f(de22/de~2) (20) 

The constitutive equations between shear stress and 
elastic shear strain at respective phases are given by 

a~t2 = 2GI~z  (2l) 

0"22 = 2G2~2z (22) 

where Ga and G2 are shear moduli of individual 
phases. It is assumed that the strain of one phase 
increases linearly with that of the other phase during 
elastic deformation. The linearity a~ for shear strains 
can be assumed as 

a22 = %e~2 (23) 

Then Equation 20 becomes 

G 2 2(1 - f )  + ( 2 f -  1)a~ 
G~ a~ = (1 - 2f) + 2fa~ (24) 

Rearranging the above equation, 

2f aG + + 1 (1 - 2f)aG 

+ 2 ( f -  1) = 0 (25) 

I f f  G~ and Gz are known by experiment, this second 
degree equation is easily solved for aa. 

The constitutive equation between 0"12 and gt2 is 
given by 

~Y*2 = 2G~2 (26) 

Using the rules of mixtures Equation 1 and Equation 
2, 0",2 is given by cr~2 and C~2~, and e12 by e~z and g22. 

Thus macroscopic shear modulus of two phase body is 

(1 -- f ) ~ 2  + f~z z  
G = 2[(1 -- f )c~2 + f g 2 z ]  (27) 

Therefore, using Equations 21 to 23, the macroscopic 
shear modulus is represented as 

(1 - f)G~ + f Gza~ 
a = (28) 

(1 - f )  +fa~  

0-?, 

0"111 

Noting that 

3,2. Bulk modulus K 
When the two phase body is under hydrostatic stress, 
one can set 

0-11 = 0-22 -~" (3"33 (29) 

e l l  = C22 = 8ss (30) 

The stress and strain components of phase 1 and 
phase 2 are also satisfied with these two relations, and 
all the shear components are zero, then Equation 15' 
gives 

3 1 0 " 7 1  - -  O"111 "] [ ( 1  - -  f )de~l  + fde21] 

+ 3 [ ( t - f ) ( s ~ t  + f a ? ~ ] [ d ~ 2 1  - d ~ l ]  = 0 

(31) 

In a similar method to the shear modulus G, the bulk 
modulus K can be derived from hydrostatic stress 
ratio. The hydrostatic stress ratio between phase 1 and 
phase 2 is 

2 ( 1 - f )  + (2f--  1)(de2,/de~l) 
(1 - 2 f )  + 2 f ( d a ~ l / d e ~ l  ) (32) 

c~1 = 3 K ~  (33) 

o~1 = 3K2z,21 (34) 

where K1 and Kz are the bulk moduli of respective 
phases. And if the linearity aK between ~1 and ~fl is 
assumed such that 

2 

~1 = aK~t  (35) 

Then, Equation 32 becomes 

K2 a2 + K7 + 1 x (1 - 2f)aK 

+ 2 ( f - -  1) = 0 (36) 

where aK can be obtained. 
On the other hand, macroscopic bulk modulus K is 

given by 

~11 = 3Kz~t (3.7) 

Using the modified rules of mixtures Equations 1 
and 2, 

(1 - f )  ~ 1  + f o ~ l  
K = 3[(1 - f)~,~ + fermi (38) 

By Equations 33 to 35 this becomes 

(1 - f )K1 + fK2aK 
K = (39) 

(1 - f )  + fa,c 
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Other macroscopic elastic constants of Young's 
modulus E and Poisson's ratio v are to be calculated 
from G and K that are already given at above deriva- 
tion. The correlations between the elastic constants 
are given in the general elasticity theory. 

4. Governing equation for stress 
and strain partition in the plastic 
deformation 

The governing equation for the stress and strain parti- 
tion during tensile deformation can also be derived 
from Equation 15. The stress component of individual 
phases is expressed by macroscopic stress and internal 
stress such as 

(1i} = (1ij + (1i}' (40) 

(16 = oij + oi 2! (41) 

where ! I and 21 denote internal stresses in phase 1 and 
2. In the case that spherical or randomly oriented 
ellipsoidal second phase particles were embedded in 
matrix, and the composite body was under uniaxial 
load of tensile direction (11-direction), the relation- 
ships between internal stress components were derived 
to be I-7, 29] 

t l  11 1I (42) (122 ~ (133 ~ - -  1(111 

21 2I 21 (43) (122 ~ 0"33 ~ - -  10"11 

Furthermore the amount ((121 - ~11)in Equation 15 
has been called the load transfer stress Otr" Since the 
load transfer stress have a relation with the internal 
stresses as 

( 0 " 7 1 -  0"11) ---~ ( ( 1 2 1 - - ( 1 1 / )  (44) 

one can derive the following relations 

(0.22 - -  0.12 ) = ( ( 1 2 2 / -  0.22 )1I  

1 / ' ~ 2 I  1I 1 2 ~((111 o~l) (45) = -- 2[~:~11 -- 0 1 1 )  = - -  

(o 3 - ( 1 h )  = - 0.33)" 

! [ ~ 2 I  l I  1 2 3((111 (1h) (46) ~--" - -  2 1 , ' J l l  - -  ( 1 1 1 )  ~ - -  

On the other hand, macroscopic plastic strains have 
the following relation [-7] 

'S;2 ~ 3  1 P (47) 
= = -- 2 ~ i i  

In the region of large plastic strain, we can assume 
that the total strains, elastic strains plus plastic strains, 
also satisfy the form of the above relations, 

~22 = E33 ~ " �89 (48) 

The shear components of stresses and strains are 
zero. Using Equations 45 to 48, Equation 15 becomes 

3 2 i1-(1il - (111] 1-(1 - f ) d e ~ l  + fdeZl ]  

+ [(1 - f ) o x l  +f (12a] [de~t  - da~l] = 0 

(49) 

Therefore, the governing equation for stress and strain 
partition in the plastic deformation of two phase 
alloys is given by 

(1fl = 5 ( 1 - f )  + (5f--  2)(dg]l/de~l (50) 
0.11 (3 -- 5f). + 5f(de21/de~l) 
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It is noted that the stress ratio between constituent 
phases 2 - t  ((111/(111) is represented as a function ,of the 
strain increment ratio (de ~zl/de ~l). 

Using Equations 40 to 43, the equivalent stress o f  
the phase 1 is derived to be 

1 
- ( 1 1 2 )  2 + ( ( 1 h  - (13'3)  2 

+ ((13i3 _ (1~1)2]1/z = (111 + 3oi,3-1' (51) 

likewise that of the phase 2 is 

3 ~ 2I (52) (1:q ~--- (111 -]- 3 ' ~  

In the case that plastic strain is dominant at both 
phases, it is possible that 

~ : (  : ~1 lp ~ Elll (53) 

a:q p = a2f ~ el21 (54) 

where ~o~qO and e[q p are the equivalent plastic strains of 
phase 1 and 2. Then the ratio between the equivalent 
stresses of constituent phases can be obtained from 
Equation 49, 

2(1oq = 2(1 - f )  + ( 2 f -  1 ) (deg /deg)  (55) 
(1:q (1 -- 2f) + 2f(dsZ~/ds~q p) 

5. Applications and discussions 
5.1. Macroscopic elastic constants of 

tungsten carbide-cobalt (WC-Co) 
alloys 

In this section the theoretical analysis for various 
elastic constants will be verified by comparison with 
other theoretical approaches. The WC-Co composites 
have been frequently studied in terms of the relations 
between macroscopic elastic constants and volume 
fraction of constituent phases. Various volume frac- 
tions of WC in WC-Co alloys are easily obtained by 
sintering of the mixture of WC and Co powders, and 
there is large difference between the elastic constants 
of WC and Co. The cobalt is softer than the tungsten- 
carbide, thus the cobalt was regarded as the phase 
1 and the tungsten-carbide the phase 2 (hard phase). 
According to the literature [9, 16] the elastic constants 
of G1 = 80.2 and K1 = 184.2 for Co and G2 = 293.1 
and Kz = 381.3 for WC were used for theoretical 
calculation of the elastic constants of the composites. 
The exact solutions for macroscopic shear modulus 
G and bulk modulus K can be given by means of 
Equation 28 and Equation 39, Thus the values of 
G and K have to be firstly determined. The other 
macroscopic elastic constants such as Young's 
modulus E and Poisson's ratio v were calculated from 
the values of G and K. 

The elastic strain linearity aG was estimated by 
inserting shear moduli of WC and Co into Equation 
25. Then, the macroscopic shear modulus G was cal- 
culated from the aG values. Likewise the elastic strain 
linearity aK under hydrostatic stress was calculated 
from Equation 36, and the calculated values were used 
to evaluate K. The calculated values of aG and aK are 
shown in Table I. Both aG and aK increase with vol- 
ume fraction of WC. And the aG value is lower than 
aK value, which seems to be caused by the greater 



T A B LE I The calculated values of macroscopic elastic constants of WC-Co alloys. Strain linearities,ao and aK are listed with volume 
fraction of WC. The upper and lower bounds were calculated from Hashin and Shtrikman's equations [11]. 

f(WC) a~ aK G(GPa) K(GPa) E(GPa) v 

0.0 0.4296 0,6515 

0.1 0.4444 0.6596 

0.2 0.4612 0.6681 

0.3 0.4801 0.6768 

0.4 0.5007 0.6859 

0.5 0.5229 0.6951 

0.6 0.5461 0.7044 

0.7 0.5696 0.7138 

0.8 0.5928 0.7232 

0.9 0.6153 0.7325 

1.0 0.6367 0.7416 

Co 80.2 184.2 210.0 0,3100 

Upper  Bound 94.2 199,3 244.1 0.3010 
Theory 90.2 197.7 234.8 0.3009 
Lower Bound 90.1 196.5 234.6 0.2958 

Upper  Bound 109.4 215.1 280.6 0.2919 
Theory 102.2 212.4 264.2 0.2917 
Lower Bound 101.4 209.8 261.9 0.2827 

Upper Bound 125.8 231.9 319.5 0.2825 
Theory 116.5 228.5 298,7 0.2821 
Lower Bound 114.1 224.3 292.7 0.2704 

Upper Bound 143,6 249.6 361.4 0.2727 
Theory 133,5 246,0 339.1 0.2703 
Lower Bound 128.7 240,3 327.6 0,2587 

Upper Bound 162.9 268.3 406.5 0.2625 
Theory 153.3 265.0 385.5 0.2575 
Lower Bound 145.5 257.8 367.4 0.2475 

Upper Bound 184,1 288.2 455.4 0.2515 
Theory 176,1 285.5 438.1 0.2442 
Lower Bound 165,2 277.2 413.4 0.2366 

Upper Bound 207,4 309.3 508.5 0.2395 
Theory 201,7 307.3 496.5 0.2308 
Lower Bound 188~4 298.9 467.0 0.2260 

Upper Bound 233.0 331.7 566.4 0.2263 
Theory 230.0 330.6 560.0 0,2177 
Lower Bound 216.3 323.1 530.5 0.2154 

Upper Bound 261.5 355.7 630.0 0.2114 
Theory 260.6 355,3 628.1 0.2054 
Lower Bound 250.4 350.5 606.7 0.2048 

WC 293.1 381,3 700.0 0.1940 

value of GE/GI ( =  3.66) than the value of K2/K~ 
( = 2.07), It is worth to note that a a and a r are always 
less than 1.0 for all alloys which are satisfied with the 
conditions that G2 > G1 and K2 > K1. Paul [9] 
showed that the iso-strain theory gave the upper 
bounds of elastic moduli and the iso-stress theory 
the lower bounds. Since ao = 1.0 or ar  = 1.0 means 
the validity of the iso-strain theory, it is evident that 
the macroscopic moduli by the present theory are 
under the Paul's upper bounds. 

The calculated values of G, K, E and v were com- 
pared with the Hashiffand Shtrikman's bounds [10, 
I l] in Table I. The various elastic moduli of WC-Co 
composites estimated by experiments [12-16] de- 
pended solely on the volume fraction of WC, and they 
fell within the Hashin a n d  Shtrikman's bounds. The 
elastic constants calculated by the present theory also 
invariably fall between the Hashin and Shtrikman's 
bounds, hence it is evident that the present theory can 
well describe the elastic deformation of two phase 
alloys. 

5.2. General aspects of the governing 
equation for Stress and strain partition 
in the plastic deformation of two phase 
alloys 

To solve the governing equation (Equation 50) one 
must know the in situ constitutive equations of 

Ol1~ versus exl and 021 versus g21. In plastic region 
Hollomon equation or Ludwick equation may be use- 
ful to obtain in situ flow curves of the constituent 
phases. The in situ flow curve is the stress-strain rela- 
tion when the constituent phases constrain each other 
in the phase aggregate, and is different from the flow 
curve of a free single phase. Estimation of the in situ 
flow curve is not the scope of the present paper, so that 
the reported data would be used for calculations in the 
following sections. 
Equation'50 can be rewritten as 

o2 5(1 -- f )  + (5f -- 2)(dg2/del) 
- -  = ( 5 6 )  
o l  ( 3 -  5/) + 5f(dez/d~l) 

where subscripts 1 and 2 mean the phase 1 and 2, 
and all stresses and strains are 11-components. Ac- 
cording to this equation stress ratio (o2 /o l )  was plot- 
ted in Fig. 1 as a function of strain increment ratio 
(d~//d~l) for several hard phase volume fract ionf  The 
following facts were revealed by inspection of the 
Fig. 1: 1. The solution Curve can be interpreted such 
that a deformation state corresponds to a point 
(o2/o l ,  daz/del) on the  curve of given f ;  2. All of the 
solution curves have a trend to decrease with increase 
of strain increment ratio. This means that the material 
whose constituent phases have small strength differ- 
ence, and give large values of de2/dal reveals small 
stress concentration on hard phase; 3. Position of 
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L.  

L 

1 

0 i J I ; r 

0 0.2 0.4 0.6 0.8 1.0 
Strain increment ratio dE2/dE 1 

Figure 1 Stress ratio cy2/cy ~ as a function of strain increment ratio 
de2/dc~ for several volume fraction of hard phase (phase 2),f: (~) 
1,0, (4,) 0.7, (&) 0.5, (A) 0.3, (D) 0.2 and (11) 0.0. 

solution curve moves up with increase of volume frac- 
tion of hard phase f  This illustrates that the intensity 
of stress concentration on hard phase can increase as 
f increases, Resultantly, high stress concentration 
may derive early initiation of plastic deformation of 
the hard phase although deformation of the soft phase 
proceeds in a more rapid rate; 4. The solution curves 
in Fig. 1 fall between the iso-stress line (~'2/cyl = 1.0) 
and the iso-strain line (de2/d~ .= 1:0); 5. The solu- 
tion curves converge to the point that crz/cyz and 
d~z/d~l are simultaneously equal to unity. This means 
that if two phase alloy is subjected to the iso-stress 
condition, it must be also subjected to the iso-strain 
condition. This phenomenon may occur if the flow 
curve of one phase is the same as that of the Other. 
Therefore it can be said that the composite with low 
Strength difference between constituent phases reveals 
relatively homogeneous strain distribution during 
deformation. 

5.3. Calculation of stress and strain partition 
in spheroidized carbon steel and 
duplex stainless steel 

Two phase alloys are sometimes classified into two 
groups [2, 8]. Alloys which belong to the first group 
are composed of soft matrix and a small amount of 
high strength second phase such as spheroidized car- 
bon steels [8, 25, 29-31] or dual phase steels [2, 3, 28], 
in which the matrix deforms plastically but the second 
phase particles elastically in most uniform strain 
range. Alloys in the second group consist of matrix 
and a large amount of easily deformable second phase. 
Alloys such as duplex stainless steels [8] or low car- 
bon dual phase steels [2, 4 ]  belong to this group. 
Harder phase in the second group of alloys undergoes 
plastic deformation at  a Small strain. Therefore two 
representative two phase alloys, i.e., a spheroidized 
carbon steel [29] in the first alloy group and a duplex 
stainless steel [8] in the second alloy group, were 
adopted to demonstrate the applicability of the pres- 
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ent theory. And the partition of stress and strain 
during plastic deformation was calculated by using 
Equation 56. 

The spheroidized carbon steel [29] contains 
1.14 wt % carbon and 17 per cent cementite. Ferrite 
(~) and cementite (13) are denoted by, respectively, 
phase 1 (soft phase) and phase 2 (hard phase) in the 
steel. The stresses at ferrite (or1) were evaluated from 
the residual internal stress data which were calculated 
from the X-ray diffractions [29] by using the following 
equation 

~1 = ~ + ~RI (57) 

where cr is the macroscopic stress, and cr~ z is the 
residual internal stress in the ferrite matrix. And the 
strains at ferrite (~i) were given by 

~;p fYl 
E 1 - -  -~- - -  ( 5 8 )  

1 - f  E 

where ep is the macroscopic plastic strain, the first 
term is the plastic strain of the ferrite when the cemen- 
tire have no plasticity, and the second term is the 
elastic strain (E = 207 GPa). Then the in situ flow 
curve of ferrite matrix was fitted to be cyt = 1-022~ ~ 
(MPa). The constitutive equation for cementite 
(Fe3C) was given by cr 2 = 180e2 (GPa) [35]. 

On the other hand, the duplex stainless steel [8] 
includes 40 per cent austenite (7) and 60 per cent 
ferrite (~). Two hoUomon curves, which were fitted 
from the data in the literature [8], were Cyx = 1020~ ~ 
for y phase and cy 2 = 1025~ ~176 for ~ phase. The 
Young's modulus of ferrite and austenite contained in 
above steels was 207 GPa. 

Introducing the in situ stress-strain curves into the 
governing equation, Equation 56, then the equation 
had only two unknowns ~a and ~2. ~a was assumed 
firstly and e2 was found by a computer program 
containing the bisection method. Then macroscopic 
stresses and strains were calculated from the par- 
titioned stresses and strainsl Internal stresses were also 
calculated by using Equation s 40 and 41. 

Fig. 2 shows the relation between the stress'strain 
curves of in situ ferrite, cementite and their composite. 
The flow curve of the composite (spheroidized carbon 
steel) is similar with the experimental curve [29]. The 
dashed tie lines, connecting the corresponding par- 
titioned stresses and strains of ferrite and cementite, 
are marked at several macroscopic strains 0.01, 0.03, 
0.05 and 0.07. 

Fig. 3 also shows the stress-strain curves of in situ 
austenite, ferrite and their composite. The flow curve 
of the composite (duplex stainless steel) is compared 
with the experimental curve [8]. The dashed tie lines 
are also marked at macroscopic strains 0.01, 0.03, 0.05 
and 0.07. Comparing Fig. 2 with Fig. 3, one can 
recognize that degree of stress and strain partition is 
much more severe in spheroidized carbon steel than in 
duplex stainless steel. This difference seems to be be- 
cause there is a large strength difference between the 
hard phases such as the cementite in spheroidized 
carbon steel and the ferrite in duplex stainless steel. 

Fig. 4 represents variations of stress ratio (cy2/Crx) 
which come from Fig. 2 and Fig, 3. The stress ratio in 
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the spheroidized ca rbon  steel increases rap id ly  up to 
abou t  1.9 and is s a tu ra t ed  at  ~ ,,~ 0.02. The  stress ra t io  
in the dua l  phase  steel composed  of abou t  15 per  cent 
mar tens i te  and  ferrite mat r ix  was es t imated  to  be 2.24 
by the shear- lag theory  [28]. And  Cho  and G u r l a n d  
[8] showed that  the value was 1.5-1.6 after sa tu ra t ion  
for a spheroidized ca rbon  steel, in which volume frac- 
t ion of cementi te  was 0.167. Hence it can be conc luded  
tha t  the present  theory  gives reasonable  values of the 
stress ratios.  

The stress ra t io  in the duplex  stainless steel de- 
creases from abou t  1.35 as seen in Fig. 4. Since the 
stress ra t io  within elastic l imit  of bo th  const i tuent  
phases  is 1.0, this is because  the Young 's  modul i  of the 
two cons t i tuent  phases  was assumed  to be equal,  the 
value might  be rapid ly  increased from 1.0 up to 1.35 at 
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Figure 5 Strain ratio as a function of strain for (D) spheroidized 
carbon steel (~ + 13) and (A) duplex stainless steel (y + ~). 

init ial  s t ra ining (0.0 < s < 0.005). Cho and G u r l a n d  
[8] showed tha t  the stress ra t io  of this steel was a con- 
s tant  value of  abou t  1.17 after ~ = 0.02. This value 

agrees well with the value of the present  calculat ion.  In  
spite of large amoun t  of ferrite (hard p h a s e ; f  = 0.6) the 
stress ra t io  in the duplex stainless steel is less than that  
in the spheroidized ca rbon  steel. This seems because of 
ear ly re laxa t ion  of  stress concen t ra t ion  by easy 
deformat ion  of ferrite. 

The strain ra t io  (~z/e~)  for the two al loys are shown 
in Fig. 5. The strain ra t io  of the spheroidized carbOn 
steel rap id ly  decreases to go below 0.1 with strain, 
while that  of the duplex stainless steel decreases to 
a m in imum poin t  and  increases slightly from the po in t  
with subsequent  increase of strain. Cho  and G u r l a n d  
[-8] measured  the phase strains by means  of the micro-  
grid mesh impr in ted  by pho to l i thography .  F o r  
exariiple, they s h o w e d  that  the strain ra t io  of the 
duplex stainless steel was 0.77 at  s = 0.06, and  that  of  
a spheroid ized  ca rbon  steel 0.066 at  ~ = 0.05. I t  can be 
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noted that strain ratio is very sensitive to strength 
difference between constituent phases and to volume 
fractions [2]. 

5.4. Internal stress by nonhomogeneous 
deformation 

The internal stress of tensile direction (1 I-direction) 
was estimated from the partitioned stresses of respect- 
ive phases and the macroscopic flow stress by means 
of Equations 40 and 41. Fig. 6 shows the internal stress. 
variation of spheroidized carbon steel. Internal stress 
of matrix crl~, which is equal to ( - )o~ (back stress), is 
balanced with that of second phase 2~ o11. Hence the 
signs of those are opposite each other. It can be noted 
that the absolute value of the internal stress has a sim- 
ilar trend to the stress ratio. The internal stresses 
(absolute values) of both phases increase rapidly at 
initial straining. 

Using the Eshelby's solution for inclusion trans- 
formation [21, 22], several continuum models [7, 
23-25] and dislocation continuum model [20] have 
been developed to estimate internal stress. Recently, 
Chang and Asaro [31] used a continuum model to 
estimate the internal stress of the ferrite matrix of 
spheroidized carbon steels. In their model the result of 
the continuum theories [20-22] was modified by 
Bauschinger effect test data, namely, permanent soft- 
ening stresses. They showed that in spheroidized car- 
bon steel the internal stress generated by unrelaxed 
plastic incompatibility saturates at 3• per cent strain. 
It was found that internal stress contributes about 
20 per cent of the total strain hardening. 

Wilson and Konnan [29] measured the residual 
internal stress of spheroidized carbon steel after un- 
loading by using the X-ray diffraction method. In 
small strain range the residual internal stresses meas- 
ured by X-ray diffraction were smaller than the in situ 

internal stresses given by the present calculation. This 
may be because at small strains X-ray measurements 
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Figure 7 Internal stress development in duplex stainless steel 
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are largely subjected to general relaxation during un- 
loading, and subjected to local relaxation at X-ray 
diffracting subsurface layer [32]. But in large strain 
range the calculated values of cr~(cz) (Fig. 6) agree 
well with the residual internal stress data [29]; for 
example, both the X-ray measurement and the present 
calculationgave about 107 MPa at 7% strain. 

Bauschinger effect test has been frequently conduc- 
ted to obtain internal stress [8, 30]. The internal stress 
in matrix (O~x) measured by X-ray diffraction and the 
permanent softening stress (ops) in reversed loading 
have a relationship that ~ x  ~ 0.5ops [30, 32]. But this 
relationship can not be applied to duplex alloys. Cho 
and Gurland [8] used a special method to obtain back 
stress from the transient softening in reversed strain- 
ing. This was because no permanent softening was 
observed in Bauschinger test for ~-7  duplex stainless 
steel. If flow resistance is caused by weak obstacles 
which are permeable to dislocations, then the lowering 
of flow stress in reversed straining will be only a transi- 
ent effect [32]. Thus the Bauschinger effect test seems 
unsuitable for determination of the in situ internal 
stresses of duplex alloys. But the present theory might 
supply a useful tool for estimation of the in situ inter- 
nal stress development during deformation. The inter- 
nal stresses of duplex stainless steel is successfully 
evaluated by the present theory, and they are illuS- 
trated in Fig. 7. The values in Fig. 7 have a good 
agreement with the reported da ta  [8]. 

6 .  C o n c l u s i o n s  

A new stress and strain partition theory for two phase 
alloys was developed. It was based on the assumption 
that macroscopic strain energy density had an extreme 
value during deformation. The Lagrangian multiplier 
method was used to find the extremum condition, 
from which the governing equation for non- 
homogeneous plastic deformation and the expressions 
for macroscopic elastic constants were obtained. The 



following conclusions were drawn from inspection of 
the governing equation and from applications of the 
present theory to two phase alloys such as WC-Co 
alloys, a duplex stainless steel and a spheroidized 
carbon steel. 

1. The formulas for macroscopic shear modulus 
G and macroscopic bulk modulus K could satisfact- 
orily predict the G and K values of WC-Co alloys. 
Young's modulus E and Poisson's ratio v were also 
calculated from the evaluated values of G and K. All 
the calculated elastic constants fell within the Hashin 
and Shtrikman's upper and lower bounds. 
2. When the stress ratio was plotted as a function of 
the strain increment ratio according to the governing 
equation for nonhomogeneous plastic deformation, 
the plotted curves confirmed the well known facts that 
the stress ratio and strain ratio increase as the volume 
fraction of hard phase increases, and that large 
strength differences between constituent phases leads 
to high stress ratio and high strain hardening. 
3. The fitted Hollomon equations of in situ individual 
phases and the bisection iterating method were used in 
the calculations of stress and strain partition. The 
calculated values of the stress ratio and strain ratio 
were in accordance with the reported data. The in- 
ternal stresses and macroscopic stress-strain curves 
were also successfully estimated by the present theory. 
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